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Abstract  

Background: Tissue – based diagnosis (morphological analysis of tissue) judges, 
measures and interprets morphologic images which have been acquired from human 
tissue. It translates the findings into a diagnosis or description of biological functions. 
What are its principle algorithms and theoretical background? 

Theory: Pathologists are used to distinguish between structure and function. Biological 
structures are ordered clusters of material (genes, nuclei, cells, organs, etc.), which 
remain constant during the period of detection and observation. They are commonly 
embedded or appear in circumscribed spaces. These spaces are clearly separated from 
their environment (background).  

Functions are forces that act on structures. They modify their appearance, create and 
delete structures and their spatial relationship. The recognition of both structures and 
functions is dependent upon the observation time: Material that remains unchanged 
within the observation period is called structure, its changes between a series of 
observations a function.  

Derivatives: Biological structures and functions should be interpreted in relation to the 
observation time. Functions can be considered structural gradients of time or of 
observation periods.  

Implementation: The analysis of conventional stained histological slides reflects to a 
short non changeable observation time, which in reality cannot be repeated at 
different times on the same tissue.  
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Acquired digital images such as virtual slides (VS) offer the opportunity of simulating 
different observation times if object features are analyzed that reflect structural 
changes at different times. The measurement of immune histochemistry intensity 
levels performed on the same structure can be considered a time series of the binding 
or antigen – antibody process. The obtained frame of these measurements can be 
mapped on chemical significant descriptors such as Shannon’s and structural entropy, 
and their entropy flows.  

Material and Methods: Histological glass slides taken from a previous biochemical 
study [1], and displaying with osteoarthritis cartilage  of eight patients and of four 
osteosarcoma patients were incubated with AP labelled polyclonal antibodies against 
human Gal-1, -2, -3, -4, -7, -8, and -9, which had been obtained by recombinant 
production and purification.. One snapshot per case was digitalized and the staining 
intensity was measured in relation to a series of segmentation grey levels (0 – 255). 
The data were mapped on the principal measures Shannon’s and structural entropy as 
well as on the entropy flow derived from texture analysis.  

Results: The mapped functions of entropies display with significant changes between 
the galectin-7 positive images and their negative control counterparts. The data 
indicate that the binding capacities of galectin-7 hold a significant function during the 
development of osteoarthritis cartilage. 

Conclusions: Laboratory techniques that simulate time-related series of 
measurements can be used to describe and interpret biological functions in living 
organisms at the cellular level. 

Keywords: Digital pathology, structure, function, galectin-7, structural entropy, cellular 
heterogeneity. 

Virtual Slides: www.diagnosticpathology.eu/vs/2016_2_106/ 

 

Introduction  

Medical diagnosis is an established method to forecast and interact on the development of 

health aberrations [2] [3]. Starting from a broad set of information it finally ends in a digital 

(yes – no) decision. For example, whether anti-inflammatory drugs should be given to a child 

or not, whether a cancer should be operated on or not, whether additional therapeutic actions 

should be undertaken or not [4].  

Tissue – based diagnosis which is diagnostic performance on different kinds of human tissue 

such as cytology, biopsy, aspiration specimens and smears, possesses the highest sensitivity 
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and specificity, or the lowest error rate in human disease detection and classification [5] [6]. 

Microscopy and tissue analysis at the cellular level contribute to the most frequently applied 

methods within this spectrum [3].  

The technological progress of image digitalisation and information distribution did not pass by 

tissue – based diagnosis. To the contrast, it influences and modifies pathology laboratories and 

microscopic diagnosis performance to a high degree, often without being noticed by the 

involved pathologists [7]. 

In addition, different technologies also create new pathways in tissue – based diagnosis 

especially molecular biology and molecular genetics [8, 9]. Both techniques now-a-days play a 

major role in diagnosis classification and derived applications such as individualized therapy or 

predictive diagnosis, disease risk evaluation in adults or even in foetal development stages 

[10]. 

Most of the implemented molecular and gene or DNA reduplication technologies require 

sophisticated statistics, image acquisition and interpretation methods to fully detect and 

interpret the visualized information [11]. 

Herein we want to discuss and propose a generalized theory and its application of structures 

and functions in man. The idea allows to simulating the impact of functions on structures and 

vice versa.  

 

Theory of structure and function     

The definition of structure and function is different and specific in different application fields. 

In mathematics, a structure means a set of defined properties or functions. The relationship 

between the elements of a set or between different sets has to obey certain conditions and 

defines the structure [12].  

In molecular biology, functions are related to reciprocations between structures that posses 

and act as information storages. Examples are macromolecules, nuclear acids, proteins, 

cellular membranes, cells, etc.  

Pathologists are interested in these structures that can be visualized at different 

magnifications and by different methods, most commonly at the cellular level using 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2016-2:106
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haematoxylin / eosin (HE) stains. The HE stain permits a clear distinction between different cell 

types (for example epithelial cells versus fat cells). Histochemistry and derived techniques such 

as immunohistochemistry (IHC), in situ hybridization (ISH), etc. visualize molecular structures 

that are involved in reciprocations [3, 6, 10, 13, 14].  

All these investigations display with structures. Their functions (reciprocations) have to be 

detected by different methods such as biochemical assays, tissue incubations, etc. [2, 15, 16]. 

In surgical pathology or tissue – based diagnosis the analysis of structures means that 

agglutinations of material have to be evaluated which have lost their biological functions, i.e., 

which are dead and usually fixed by appropriate dyes. The examination of these structures 

focuses on causes which have induced remarkable changes, and the forecast of their influence 

on the living organism.  

The general algorithms investigate in numerous already analyzed equivalent structures, the 

known development of diseases which display with a close relationship to the investigated 

morphology. The association is commonly intensive and allows precise predictions without 

knowing the underlying reciprocations. 

Do algorithms exist that allow such calculations? 

Basic conditions: Let us presume that we visualize biological structures microscopically at a 

time ts within a certain time period to that is needed to separate structures from its 

background. The end of the observation period is then ts + to = te. Obviously, all objects that 

can be detected within the period to care structures, and no functions or reciprocations can be 

detected. 

We then theoretically repeat the same analysis after a delay td on the same sample using the 

same observation period to. We then can measure active functions that act on the structures if  

1. the structures have changed their position within the observation space (background), 

or  

2. they have changed their appearance. 

Measurable changes are related to the surface (form factor, shape) and/or internal properties 

(light absorption, colour, etc).  

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2016-2:106
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We then repeat the observation in a series of measurements ts1, ts2, ts3,…tse, and derive a 

set of functions from the visible changes of structures at the times tsi. In other words, the 

functions are related to structural differences between ts1 and ts2, or ts2 and ts3, etc. In 

mathematical description the functions or reciprocations reflect to the gradient F = Ds/dts.  

Unfortunately, in reality we cannot perform such measurements because the tissue sample 

under investigation is unique and cannot be reproduced.  

What about a virtual (digital) environment?  

Hypothesis: How to simulate the gradient F in the virtual world? We have to find a visual signal 

that is related to the multiple observation periods, because we then can replace the gradient 

dts by a tsi related intensity of signals iti. The more intensive a signal the older is the 

associated staining start, which can be replaced by the observation start ts multiplied by a 

constant c. Thus, F = c*{iti/tsi}. 

Practical considerations:  When searching for appropriate potential simulations IHC and lectin 

histochemistry (LHC) seem to be suitable. Both techniques visualize intensity related chemical 

properties in terms of antigen-antibody or sugar – protein related binding forces. The term 

entropy is an adequate descriptor or frame to measure intensity related and other properties 

of physical – chemical reactions [17] [17, 18].  

Entropy properties: Entropy is a fundamental thermo-dynamical state variable which defines 

the direction of development of closed (and open) thermodynamic systems [17]. Shannon has 

demonstrated that entropy is a suitable descriptor of disorder in systems that are composed of 

numerous microstates [19].  

Tsallis has extended the entropy to systems that contain a certain rest – entropy, i. e, whose 

entropies cannot be added in a simple manner [20] [21].  

Kayser introduced a morphology – adjusted so – called structural (MST) entropy [17, 22, 23]. 

This entropy is derived from graph theory applications. It is an eligible descriptor of cellular 

disorder in tumours and other tissue lesions [24-26]. Shortly, cellular proliferation is assumed 

to create two identical daughter cells form their mother cell. The daughter cells should display 

with (nearly) identical properties and (nearly) identical distance under normal conditions [17]. 

Thus, the combined measurement of distance and feature adjusted entropy properties should 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2016-2:106
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be a descriptor of disorder during the cellular proliferation (or apoptosis) process. It can be 

reproducibly applied to microscopic images and serve for reproducible statistics [17]. 

In fact, MST entropy and its entropy flow turned out to be of prognostic impact for patients 

who have developed different cell types of malignancy [27-30].   

Observation series and entropy frame:  A digital (microscopic) image can be adjusted to a 

two-dimensional plane which is defined by its grey value levels. All pixels with grey values 

above and within the plane are defined objects, those below the plane background. The plane 

is the event space, and the objects are events which serve for the entropy calculations.  

A time ordinate is observed when passing through all entropy planes, which obviously reflect 

to the staining procedure: the more intensive the staining the longer or more active it took 

place, i.e., the stronger have been the attractive forces. Thus, the intensively stained objects 

are equivalent to early events (or high attractions) in contrast to their weakly stained 

counterparts. These visualize weak attractions and/or a late staining start. 

These are the prerequisites that serve for time – series measurement simulation of former 

object – related thermodynamic in vivo properties, which can be observed in reality by 

changes of the environment (tissue cultures) and disintegration of tissue only. 

How can they be visualized and measured? 

 

Image analysis 

Image content information: Each microscopic image possesses information which can be 

assessed when viewing the image. The information is presented in circumscribed two 

dimensional arrangements of grey values in specific colour spaces (red, green, blue for 

example). The pathologist interprets these arrangements and associates his knowledge to 

them. In other words, interpretation or evaluation of a diagnosis is a communication with the 

image and knowledge of the arrangement of nuclei, membranes, vessels, lymphocytes, etc. 

Such a judgement can be separated in two components: 1. Information of the image itself, i.e. 

independent from the pathologists’ knowledge, 2. external knowledge, i.e. knowledge of the 

pathologist.  The combination of both results in the. stated diagnosis. It is important to 
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separate these issues, especially, when algorithms are designed that should be applied to 

different kinds of images [10].   

Object, structure and texture: When evaluating image content information, it is useful to 

clearly define and distinguish between object, structure and texture in analysis of microscopic 

images. Objects are grey value agglutinations that posses a distinct significance for the viewer. 

They include biological meaningful events, such as chromosome, nuclei, cells, vessels, etc. 

They are “composed” of image content information and external knowledge. Structures are 

spatial iterative objects and correspond to higher order symmetries [10]. Obviously they 

cannot be defined without external knowledge. 

Textures are grey value distributions that correspond to individual grey values of pixels and do 

not require external information. 

The following statements are valid: Textures are prerequisite for objects, and objects 

prerequisite for structures.   

Image primitives are pixel based structures. They correspond to letters in a word and can be 

composed to pixel structures. A set of such structures is shown in <Figure 1>. 

 

Figure 1: Proposed set of pixel – based texture graph primitives. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2016-2:106
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Implementation 

Prerequisites 

It might be assumed that all commercially available whole slide scanners acquire standardized 

and reproducible digital images. This seems, however, not to be realized in reality, and 

numerous virtual slides display with non-negligible aberrations in terms of illumination, color 

space and glare effects [31-34]. Thus, prior to applications of automated information detection 

and extraction the acquired digital images have to be standardized for at least three different 

parameters: 

1. Homogenous illumination or shading. An example is demonstrated in <Figure 2>. 

Shading correction (vignette) can be performed using the differentiated image or using 

a standard correctly balanced image [35]. 

2. Adjustment of the gray value range in all three color spaces for the maximum and 

mean gray value range. This procedure should be performed after the shading 

correction, and is needed to balance between different laboratory effect such as 

thickness of the tissue cut, principal staining intensity (age of the dye), etc. [36, 37]. 

3. Adjustment of gray value distribution in order to avoid any artificial gray value clusters. 

They can be induced by non homogenous color sensitivity of the scanner chip [36, 37].  

The calculation of the number of potentially useful thresholds in order to separate the object 

space form the background is a useful step for a) confirming suitable image quality and b) 

defining mandatory gray value thresholds in relation to the wanted objects [10, 35, 38]. It is 

less known and less applied in general. The number of statistically useful thresholds (i.e., >95% 

confidence areas) accounts to three in IHC and conventionally stained images, and to two in 

one-marker fluorescent images, as shown in <Figure 3>.  An IHC image that contains only 1 – 2 

detectable thresholds is probably of poor image quality or of inadequate technical origin [10, 

35, 38]. 

The next step addresses to information distribution within the whole VS, or the detection of 

regions of interest (ROI). Several regions might be present in the image, and all of them can 

serve for additional analysis. Several different algorithms of ROI detection have been published 

in the literature [10, 16, 35, 39-42].  

 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2016-2:106
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Figure 2: Example of shading influence on image analysis and its potential detection and 

correction in hue – saturation – intensity (HIS) color space.  

 

The appropriate ROI detection algorithm should be selected in relation of the aim, whether an 

interactive or an automated diagnosis is addressed to. Interactive diagnosis using ROI with 

fixed size and frames is to our experience easier and faster to perform than to evaluate 

diagnoses on ROI of variable sizes [3, 32, 43].  

Fixed ROI sizes permit, in addition, the calculation of entropy flow between the different 

neighboring frames; an option, that cannot be calculated on variable areas due to missing 

standardization of ROI area (It might be reminded that entropy calculations depend on the size 

of the selected space) [7, 10].  

Variable ROI sizes are appropriate for automated diagnosis in difficult cases. Based upon 

structure – associated parameters their boundaries separate diagnosis – relevant areas from 

diagnosis irrelevant areas more distinctly.  
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Figure 3: Example of gray value thresholds that are significant and suitable for segmentation. 

 

In case of image comparison approaches fixed ROI areas are a prerequisite in order to use 

similarity operations between the source and the test ROI [7, 10]. The same statement holds 

true for pixel based texture approaches. Again, several image transformations can only be 

performed on square sized images (for example Hough or recursive transformations) [7, 10].   

Fixed ROI sizes allow the calculation of entropy differences between neighboring (and all) 

segments and of entropy flows between the segments. This measure is an extension of cell – 

based entropies that are calculated between neighboring individual cells. Images of both 

approaches are shown in <Figure 4>.  

The implemented algorithms distinguish between the classic object measurements which 

include the quantification of nuclei, membranes, and vessels, and the discussed gray value 

adjusted entropy measurements. The principal algorithm is presented in <Figure 5>.  All 

measurements include the analysis of higher order structures, as described in [2, 7, 10, 16, 17, 

35]. These analyses use Voronoi’s neighborhood condition and the application of graph theory, 

namely weighted graphs [44-47]. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2016-2:106
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Figure 4: Example of ROI detection by sliding image compartments of fixed size and by graph 

theory approach. 

 

 

Figure 5: Conventional image analysis strategies to acquire image content information using 

self learning approaches.  
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In addition to the spatial distance specific features of the included objects serve for weights. 

These weights are partially dependent upon the underlying staining intensities, and partially 

on morphologic features such as object size, moments, circumference, and of circumference / 

area relationship [3, 16, 22, 31, 48]. 

 

Figure 6: Example of conventional analysis of anti-galectin-7 stained cartilage showing the 

original image and derived MST graph. 

 

Measurements and Material 

Histological slides of eight osteoarthritis cartilages and of four control cases (cartilages of 

osteosarcoma patients) were incubated with labeled antibodies against a panel of polyclonal 

antibodies against galectin-1, -2, -3, -4, -7, -8, -9, as described previously by Toegel et al. [1, 49, 

50]. The binding capacities were visualized using the DAB technique. Positive and negative 

controls were performed as usual, i.e. by contemporary performance of know positive cases, 

and by omission of the primary antibody. The biological significance of the approaches was 

confirmed by in vitro assays, as described previously [1, 49, 50]. Representative digitized 

images of the used material as shown in <Figures 6 – 8>.  

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2016-2:106
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Results 

 A survey of the obtained measurements is shown in <Table 1>. The differences between 

positively stained and control cases are highly statistically significant as well as the entropy 

differences between different gray value levels. In addition, the shape of the MST entropy 

curves is characteristic for images of highly and wekly degenerated cartilage, see <Figures 7, 

8>.  All arthritis cases display with characteristic minimum in contrast to the Gaussian – like 

distribution of control cases <Figures 7, 8>. 

 

 

Figure 7: Example of local (cellular) gray value related MTS entropy (left) and intensity – 

related gradient (right). In contrast to Shannon’s entropy and segmented areas the MST 

entropy characteristically displays with a minimum during its run.  
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Table 1: Survey of results: 

Feature Cases Controls 

Number of cases 8 4 

Vv stained area 0.11 0.22 

Vv stained nuclei 0.24 0.31 

No neighboring positive cells 5.17 5.9 

MST entropy cell volume -1.77 -1.73 

MST entropy of stained cells - 0.57 - 0.90 

Texture entropy - 6.57 - 6.55 

Original image entropy flow  - 0.11 - 0.13 

Texture entropy flow  - 0.09 - 0.24 

 

Explanations: 

Vv      Volume fraction 

No neighboring positive cells Number of positively stained neighboring cells according to 

Voronoi’s tessellation 

MST entropy cell volume                  MST entropy calculated according to cellular size 

MST entropy stained cells                  MST entropy of positively stained cells 

Texture entropy                   Shannon’s entropy of recursive image texture 

Texture entropy flow Entropy flow of recursive image texture between image 

compartments of fixed size (10% of image size each) 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2016-2:106
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Figure 8: Example of cellular MST entropies (right) and gray value related MST – entropy. MST 

entropy values of weakly degenerative altered cartilage display with Gaussian like distribution. 

 

Discussion 

To our understanding, medicine belongs to the set of natural sciences. They are characterized 

by general laws that are valid independently from space and time of observation, which does 

not mean that the laws cannot be influenced by observation,  or measurements [3].   

Natural sciences basically describe the history of a system and forecast its future, its 

development, or that of its elements. They describe two different states, namely a state in 

which its elements stay constant during the observation period, and a state in which 

appearance, size, or position of the system or its elements alter [19-21].  

The elements of the first state are called structures, the changes of the second state functions. 

Natural sciences such as physics, biology, or chemistry focus on functions occurring in the 

environment (background) “outside” of man. Examples include the laws of general gravity, 

relativity, electro-magnetic fields, etc.  

We assume that these laws are also valid “inside” the body of man. Indeed, we can visualize 

internal structures such as liver, heart, vessels, cells, nuclei, and even functions such as heart 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2016-2:106
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beats, transportation of macromolecules, etc. However, we also do know, that certain 

measurements can only performed “once” inside the body, because they destroy 

contemporary the structures. Examples are surgical interventions, such biopsies, or 

operations. On the other hand, these interventions are essential if we want to examine the 

structure of lesions (morphology) [3, 33, 53, 54].  

The analysis of structures at a cellular level has been extensively described by Virchow 150 

years ago. It is still today the backbone of diagnosis and treatment of fatal diseases such as 

cancer, progressive atrophy, or autoimmune disorders [3, 33, 53, 54].  

By definition, these investigations describe structures, which display with the present state of 

a disease; however, in order to intervene or to cure the disease we do need to measure 

properties of functions. 

Herein, we describe a general approach how to derive functions from structures. The principal 

idea is that structure and function are of the same property. They only become different when 

they are associated with the observation time and period. This association permits the 

construction and virtual visualization of functions that can be stated upon one measurement 

only. The measurement has to include different structures that have been formed a different 

periods and that can distinguish these structures.  

Immunohistochemistry and related investigations such as ligandhistochemistry commonly 

present with different intensities of visualized (stained) structures. Assuming that intensively 

stained structures needed a longer time for binding (or are equipped with stronger binding 

forces) we have a model that permits the identification of structures at different measurement 

times, and, therefore, the analysis of functions.  

The term structure and function is not limited to a space – time relation ship. It can be 

transformed into other frameworks. The terms entropy, entropy flow, and structural (MST) 

entropy (flow) are important measures in thermodynamics [9, 16, 17, 27, 30, 35, 55] [56]. They 

describe the development of closed and open systems and the distance from their final state 

[3, 16, 17]. Therefore, we choose the frame entropy/MTS entropy <> time (staining) intensity 

in order to analyze functions that cannot be measure otherwise.  

The model of binding capacities of galactin-7 binding macromolecules in degenerative altered 

tissue seems to be suitable for first investigations. In addition, Gabius, Sinowatz and co-

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2016-2:106
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workers have demonstrated that these macromolecules play also an important role in the 

development of fetal organs [57] [58]. Thus, it seems to investigate in a useful approach to test 

our ideas. 

The results clearly indicate that our idea results in data that can describe or even explain 

functions in biologic development on the basis of measured structures. These measurements 

have been performed only once and within a short observation period. What are they good 

for? 

The answers include the following statements: 

1. The method describes thermodynamic states at a cellular level, for example 

the entropy distribution in a solid cancer. It is obvious to correlate the insight 

with the so – called (cancer cell) heterogeneity. Heterogeneity of malignancies 

is in focus of numerous investigations; however, unfortunately, without any 

standardized nomenclature until today [11, 17, 26]. Several different elements 

are in use for this purpose. These include proliferation, cellular (nuclear) 

appearance, vascularization, genetic aberrations, inflammatory response of 

host tissue, to name some of them [59]. 

2. This approach can be easily correlated with distinct molecular or genetic data, 

such as molecular pathways, gene expressions, or vascular findings.  

3. It can be further investigated in search for a general descriptor of birth, 

development and death of biological systems. These approaches might include 

thought of orders of biologic structures, breakdown of higher order structures 

(systems) induced by weak disturbances (functions) of low order structures, 

enhancement of functions related to structural influences, etc. 

In agglutinate, a clear distinction between structure and function is mandatory to understand 

and investigate in the future of pathology, despite both of them are of the same nature in 

principle. 
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