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Abstract 

Background: The digital world is entering all compartments of tissue – based 
diagnosis, especially education, training and performance of surgical pathology. 

Theory: Communication is a requirement of life. It is based upon knowledge, 
understanding, and adequate response. Understanding tries to implement and 
spread concordant or target related actions. Analysis of liquid biopsy, cytology, 
biopsy, surgical specimens and autopsy comprise the tissue – based sources. They 
are transferred into images and create the basis of education and training, 
followed by research and publication. 

Present Stage: Liquid biopsies require the automated application of digital tools, 
such as digital visualization and statistical analysis of the obtained DNA / protein 
figures. Manual interference does not occur.  

Cytology, aspiration smears, biopsies, and surgical specimens are still fixed, 
processed in conventional manner, and placed on glass slides. Digital microscopy 
replaces conventional light microscopy in some pathology institutes. It is usually 
applied close to its analogue performance. Diagnosis assistants are used for 
quantification of specific image features, for example to score the expression of 
functional cellular markers. Digital microscopy is an important compartment of 
the available Hospital Information System.  

At present, autopsies do not contribute to tissue – based diagnosis in a notable 
frequency. Even big University Pathology Institutes report an autopsy frequency 
less than 100 cases, in comparison to approximately 100,000 biopsy specimens or 
even more per year. Most authors name live imaging investigations (CT, MR, 
Ultrasound, etc.) for reason. An additional factor might be the diminishing impact 
of understanding in medical diagnostics: Highly precise information of individual 
(small) tissue compartments is frequently considered to be sufficient for 
treatment. They include receptor expressions, intra-cellular pathway 
abnormalities, gene alterations, etc. This seems to be a contradiction to ‘organ 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2019-5:274
http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2019-5:274
file:///C:/Users/admin/Documents/Klaus.kayser@charite.de


       Gian Kayser, Klaus Kayser; diagnostic pathology 2019, 5:274 
ISSN 2364-4893 

DOI: http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2019-5:274 
 
 

 
 

communitive information’ obtained from autopsies. Such post mortem 
information can also be obtained during the patient’s life time and predict the 
probable trails of recovery or death by use of digital pathology. The procedure is 
called ‘in vivo’ or ‘predictive autopsy’ and described in detail herein.  

Future aspects: Digital pathology is entering the field of ‘automated diagnosis’, 
starting with automated recognition of ‘regions of interest’ and associated 
characteristics such as automated diagnosis, digital self - recognition, automated 
failure repair, treatment advises, etc.  

The field of ‘digital autopsy’ will remain reserved for education because of need 
for ‘real autopsies’.  

The proposed ‘in vivo (predictive) autopsies’ offer additional perspectives of digital 
tissue – based diagnosis, which include the digital analysis of tissue / organ 
dysfunctions and syntax at life time, and the impact on forecast the recover 
/disease progress of the patient.  

Conclusions: Digital pathology is on its way to enter numerous implementations 
of tissue – based diagnosis. We propose digital ‘in vivo (predictive) autopsies’ as a 
new tool to analyze, explain and forecast the involvement of all organs in the 
individual patient’s disease development, and to interpret the ‘cause of death’ 
more in detail. 

 

Keywords: digital pathology, in vivo (predictive) autopsy, tissue – based 
diagnosis, liquid biopsy, life imaging. 
 

Introduction 

Tissue – based diagnosis is a reliable, frequently applied medical procedure to 

detect, analyze, forecast and treat nearly all human diseases [1-3]. It comprises the 

analysis of human body structures at different magnification levels. These range 

from the appearance of the whole body via organ features down to subcellular 

pathways and macromolecules [1-3]. The arrangement has been named ‘orders of 

structures’, and reflect a basic property of the majority if not of all structures in 

nature [4-6]. 

Our knowledge of presentation and actions of life has been notably increased in our 

‘digital times’ at all levels, ranging from 3D formations of macromolecules to 

behavior of various living populations [7-9]. Most if not all of this knowledge is 

electronically available to man, independently of education and place of residence 

[9]. In addition, specialized expert conferences transfer the most recent available 

knowledge to interested persons either in physical or virtual participation [1, 2, 10].   

Detected features of an individual structure or function do not include all 
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information of the analyzed process, and do not allow to derive all features of higher 

or lower ordered structures [1, 5]. 

In image analysis, any detected structure is equivalent to an object, the spatial (or 

time related constellation) to a new, higher ordered structure [2, 11-13]. Higher 

ordered structures can either be investigated directly or computed, if the spatial / 

time serial arrangement of the lower ordered structures is known [3, 4]. The 

algorithm requires the spatial distribution of the objects and a neighborhood 

condition, for example the most frequently applied Dirichlet’s tessellation (Voronoi’s 

neighborhood condition) [10, 14]. 

The spatial algorithm can be expanded to a time – related algorithm, which permits 

to forecast the fate of the analyzed structure [6, 12]. Often, the concept of entropy 

permits reliable and reproducible (transferrable) results, especially in cancer 

diagnosis [6, 12]. Most of these investigations have been performed at the cellular 

(biopsy – surgical specimen) level [3]. 

Today, liquid biopsies replace some, if not all clinically wanted diagnosis / 

information of cytology and / or biopsy, just using a different level of structures 

(circulating macromolecules) to describe and forecast the impact of the object 

sources on the fate of the whole system (man) [15-21]. 

Herein we describe the ‘order’ of applied tissue – based diagnosis investigations in 

man, and its potential performance in digital pathology. They include in increasing 

order liquid biopsies, cytology, fine needle aspiration, biopsies, surgical specimens, 

and autopsies.  

Autopsies are rarely investigated and have lost most of their attraction in our days. 

They stay in the focus of this article, because they belong to the roots of pathology, 

and digital pathology offers some interesting aspects to collect information from 

autopsies which may not be assessable otherwise. 

 

Tissue – based diagnosis - history & basic aspects 

Tissue – based diagnosis, which include all medical diagnoses that are based upon 

investigations on human tissue range back into prehistoric times. Stone age man 

performed trepanations of the human cranium and probably investigated the brain 

/ skull tissue. Ancient Greece and Chinese body drawings and medical reports 

indicate that some information of organ location and function has been detected.  

In the medieval autopsies were performed to collect information of organs and 

diseased compartments. They served for knowledge, understanding of death, 

medical education and diagnosis. Pathologists, who performed autopsies operated 

as surgeons and dentists too. 
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The ‘break through’ in tissue analysis occurred in the 19th century, when new 

microscopes permitted a detailed insight in tissue structures and their activities [22-

26] [27].  

From that time tissue – based diagnoses served for communication standards 

between pathologists and clinicians. The diagnosis names were derived from both 

morphology (small cell lung carcinoma) and clinical behavior (bronchitis, 

tuberculosis, etc.).  

Today, the meaning of ‘diagnosis’ is changing from the cellular – based descriptive 

‘advice to the clinician’ (small cell lung cancer might not be treated by surgical 

intervention) to alterations of macromolecules which might forecast of the 

individual patient’s disease development [28-30]. The technology includes 

investigations of genetic, epigenetic, and environmental abnormalities [16, 31, 32]. 

It strongly depends upon the technical accuracy and to some aspect on accidental 

and time related unavoidable influences, such as noise, chaos, fluctuations, etc. [9, 

16, 31-33]. 

 

Performance and Impact of digital tissue - based diagnosis 

1. Liquid biopsies can be considered a ‘follow – up technique’ of search and analysis 

of circulating abnormal blood compartments (tumor cells, CTC), which started to be 

clinically applied for cancer diagnosis in the 1990s [21, 34-37]. The development of 

advanced molecular biology techniques such as amino-acid sequencing, 

macromolecule magnetic resonance imaging and Raman spectroscopy permitted a 

sensitive verification of circulating tumor cells and their intra-cellular compartments 

[16, 18, 20, 31]. The accuracy and sensitivity mainly depend upon the cell type and 

less upon localization and size of the lesion [38]. Live imaging techniques such as 

computerized tomography (CT), nuclear magnetic resonance imaging (NMR) and 

scintigraphy can accurately investigate and measure both localization and size of the 

lesion. A combined investigation of liquid biopsies and live imaging informs about 

the diseases (genetic) nature (for example cancer) and its precise localization and 

extension [34, 36, 39]. Most clinical applications have been reported from lung 

cancer, followed by lymphomas and breast cancer [15, 19, 34, 36, 39]. 

Cardiovascular diseases are also subject for liquid biopsies as well as rare cancer cell 

types such as ocular cancer [37, 40, 41]. All these investigations require digitized 

biochemical, molecular genetic / epigenetic data. Digital tissue – based diagnosis is 

mandatory to perform and interpret liquid biopsies [35, 37, 42].  

2. Cytology, fine needle biopsies and surgical specimens are still fixed and 

processed in conventional manner [10, 43-46]. The aim of diagnoses derived from 

this material (morphology) is to name and classify the disease; in other words, to 
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assign potential clinical treatment too [47-49]. The diagnosis appoints to different 

targets of clinical actions, such as complete recovery, long survival, quality of life, or 

detection of recurrence. Several diagnosis features need already quantitative or 

semi-quantitative measurements, which include tumor size, inflammatory respond 

of host tissue, tumor cell grading, or proliferation rate [45, 50]. Digital tissue – based 

diagnosis permits accurate and reproducible measurements of cells and tissue, 

especially staining intensities, gene abnormalities, and configuration at different 

magnifications [12, 13, 46]. Artificial or automated tissue cut sequences are used to 

reconstruct 3-D images [49, 51], which permit an insight into the ‘real’ appearance 

of the lesion [49, 51]. 

The main aim of digital pathology derived from cells and tissue remains equal to that 

of conventional performance. Its advantages include easy and fast communication 

with clinicians, direct implementation into the Hospital Information System, 

automated and reproducible intern quality control, fast and comprehensive 

retrieval, accurate measurements and observance of molecular configurations [45, 

49, 52]. 

3. Autopsies still belong to education and training of medical doctors who want to 

become a surgeon or pathologist. All Western European Countries report difficulties 

to provide young colleagues with a number of autopsies to sufficiently fulfill the legal 

requirement.  The actual rate of autopsies amounts to only 5% - 10% of that in the 

1980s [28, 46, 53]. They are not attractive for young colleagues from the standpoint 

of training or from that of research. In addition, they are not paid well, if at all. 

Therefore, several authors suggest ‘to replace’ real autopsies by virtual autopsies 

[54-59]. These investigations usually take the cadaver and CT examinations to 

visualize the post mortem condition of the organs [60-66]. The CT investigation or 

NMR visualization are consistent with and do not alter legal evidence of the organs, 

which can be re-used for additional physical examinations. Performed CT 

examinations can be combined with additional NMR imaging and with physical 

biopsies taken from the detected lesions [54, 55, 67-70]. Most virtual autopsies of 

adult cadavers were performed due to forensic legal reasons, in contrast to virtual 

autopsies of still births and fetal malformations [58, 71-76].  

In aggregate, virtual autopsies consist of virtual imaging of the cadaver and 

contemporary analysis of physical cytology, fine needle and biopsy specimens, which 

may be analyzed virtually too [54, 55, 62, 69, 77, 78]. Physical autopsies investigate 

in the localization of organs inside the body, inspect the individual organs and take 

(large) biopsies for microscopic, genetic and molecular pathology analysis.  In non – 

forensic cases they focus on the proof the treatment of the dead person during her 

/ his life time, and to investigate in the so – called cause of death [58, 70, 73, 79, 80]. 
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4. Virtual in vivo (predictive) autopsies aim to analyze, describe and forecast the 

development of a disease of a living patient. They are composed of CT, NMR, 

Scintigraphy and Ultrasound images and physical tissue – based diagnosis. A time 

sequence related algorithm computes the obtained data on the basis of 

physiological interactions of the organs. Vascular, lymphatic vessels, and nerves 

create the ‘inner’ connective transport ways, as well as the upper and lower 

respiratory tract, gall ducts and intestines represent the connective pathways within 

the person’s environment. In addition, the male and female reproductive system as 

well as eyes and ears might be included. A general scheme of this algorithm and the 

included different orders of structures including the general predictive significance 

are exemplarily demonstrated in <Figure 1> 

The scheme is arranged to the different orders of structures, which start at the 

macromolecule (level 1), and are terminated at the ‘organ’ (level 7). An open one 

way direction of the ‘communicative pathways’ is common; however, it may be 

occluded or replaced by several either contemporary or continuous flows in contrary 

or not completely overlapping directions, for example in case of cancer, 

inflammation, or inborn abnormalities. Live images (CT, NMR, Ultrasound, etc.) 

inform about the position, surface and internal structures of each organ. Naturally, 

overall or focally distributed organ functions may become visualized too. 

In aggregate, the proposed in vivo (predictive) autopsy includes virtual anatomy in 

combination with organ dysfunctions / lesions ascertained by tissue – based 

diagnosis procedures at different life times of the patient. Their goal includes the 

understanding of the individual’s health stage at the date of in vivo autopsy and its 

probable development. It permits an understanding of the ‘cause of death’ from a 

‘communicative point of view’. 

 

Discussion 

Virtual anatomy sections are well developed and have been introduced in medical 

education since approximately 1990 [81-87]. They inform about the location and size 

of organs, there normal physiologic conditions, and their actions [82, 85, 88, 89]. 

Several accurate programs are open to be downloaded in the internet. Some of them 

include sophisticated animation [86, 87, 89-93].  

Virtual autopsies are different. They are aimed to explain the diseases of an 

individual case, and do only crudely refer to the basic human body. Therefore, a 

virtual transfer of the body’s individual reality requires different and more 

complicated algorithms. 

In microscopy, for example, the ‘normal appearance and classification’ of cells can 

be demonstrated in one example only. It refers to all cases in the past and in the 
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future, because changes of ‘normal appearance’ will not occur, or are not expected 

to happen.  

The virtual transfer of a cell population in a diseased organ can only be verified by 

thorough measurements of the cellular features and reproducible association of the 

features with the corresponding cell type. Thus, the ‘pathology’ or ‘autopsy 

algorithm’ is of different, and hard to implement nature compared to that of its 

‘anatomy’ equivalent. 

Until today, virtual autopsy is understood as practical tool to ‘avoid’ the ‘opening’ of 

the corpse and to substitute the otherwise not assessable information by radiologic 

/ resonance images in combination with tissue analysis of the ‘lesions (organs) of 

interest’ only. The procedure of virtual autopsy is equivalent to stratified sampling 

under the microscopic e [50], to the search for ‘hot spots’ in some malignancies, or 

to detect ‘regions of interest’ in virtual microscopy [1, 2, 7, 94].  

The strategy transfers the ‘random sampling’ (analysis of a ‘biased – free’ sample of 

objects which are present in the measurement plane /order) to a ‘higher’ plane 

/order [9, 12, 29, 49, 95]. Such an algorithm has to possess and use ‘own knowledge’ 

or ‘self-recognition’ at a low grade if it should run automatically [7-9, 96]. Virtual 

anatomy sections do not possess this property, because all of them stay at the same 

‘grade of knowledge’, independently from their implementation or animation 

features. 

The proposed ‘in vivo (predictive) autopsy’, however, will possess some different 

grades of ‘autonomous’ knowledge, for example the automated recognition of organ 

lesions, and its association with the ‘normal’ appearance in the body, as well as the 

‘automated’ estimation of time – related changes, and their projection in the future 

or back to the ‘start conditions’.  

At later stages it will become a promising tool to analyze and investigate in the 

communication pathways of an organ or body. These will not only communicate at 

the same level (‘order of structures’) but also interact between different levels.  

Concrete predictive measurement parameters will probably include entropy 

calculations, distance measures, and time series analyses. All of them have been 

reported to allow a reproducible description of structures and functions of human 

organs and to forecast probable organ alterations and failures [4, 10, 29, 45]. 

In this context ‘in vivo autopsies’ may mature to a new tool for both the patients to 

get familiar with the limitations of life and the medical experts to stratify diagnosis 

and treatment at different organ / body compartments.  
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Figure 1: The vertical axis represents the affected order of structure, the horizontal axis the patient’s life time and 

the dates of investigations. A linear association between the involved structures and the forecast of life time is 

assumed. The natural involvement of different structure levels (jump to the next higher level) is shown in red, that 

of potential external actions (repair) shown in green. Additional factors such as severity, activity and internal 

interactions (feedback, immunoreaction, etc.) as well as the reversibility / non - reversibility of lesion (cancer, 

inflammation, infection, infarction, etc.) are not included in this scheme of the principle algorithm. Practical 

implementations have to take into account (weight) additional parameters, such as localization and size of the 

lesions as well as age and sex of the patient.  

It should be noted, that the altered structure may be recognized / identified by virtual assessment (for example 

high resolution CT), and do not necessary require physical examination. Antique Chinese map of an abdomen 

(according to Yang Ki-Tscheu) [5].  
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