Virtual Predictive Autopsy: From knowledge and understanding to education, research and communication in digital tissue – based diagnosis.


Background: The digital world is entering all compartments of tissue – based diagnosis, especially education, training and performance of surgical pathology.
Theory: Communication is a requirement of life. It is based upon knowledge, understanding, and adequate response. Understanding tries to implement and spread concordant or target related actions. Analysis of liquid biopsy, cytology, biopsy, surgical specimens and autopsy comprise the tissue – based sources. They are transferred into images and create the basis of education and training, followed by research and publication.
Present Stage: Liquid biopsies require the automated application of digital tools, such as digital visualization and statistical analysis of the obtained DNA / protein figures. Manual interference does not occur.Tissue of cytology, aspirations, biopsies, and surgical specimens are still fixed and processed in conventional manner, and placed on glass slides. Digital microscopy replaces conventional light microscopy in some pathology institutes. It is usually applied close to its analogue performance. Diagnosis assistants are used for quantification of specific image features, for example to score the expression of functional cellular markers. Digital microscopy is an important compartment of the available Hospital Information System too. At present, autopsies do not contribute to tissue – based diagnosis in a notable frequency. Even big University Pathology Institutes report an autopsy frequency less than 100 cases, in comparison to approximately 100,000 biopsy specimens or even more per year. Most authors name live imaging investigations (CT, MR, Ultrasound, etc.) for reason. An additional factor might be the diminishing impact of understanding in medical diagnostics: Highly precise information of individual (small) tissue compartments is frequently considered to be sufficient for treatment. They include receptor expressions, intra-cellular pathway abnormalities, gene alterations, etc. This seems to be a contradiction to ‘organ communitive information’ obtained from autopsies. Such post mortem information can also be obtained during the patient’s life time and predict the probable trails of recovery or death by use of digital pathology. The procedure is called ‘predictive autopsy’ and described in detail herein.
Future aspects: Digital pathology is entering the field of ‘automated diagnosis’, starting with automated recognition of ‘regions of interest’ and associated characteristics such as automated diagnosis, digital self - recognition, automated failure repair, treatment advises, etc. The field of ‘digital autopsy’ will remain reserved for education because of need for ‘real autopsies’. The proposed ‘predictive autopsies’ offer additional perspectives of digital tissue – based diagnosis, which include the digital analysis of tissue / organ dysfunctions and syntax at life time, and the impact on forecast the recover /disease progress of the patient.
Conclusions: Digital pathology is on its way to enter numerous implementations of tissue – based diagnosis. We propose digital ‘predictive autopsies’ as a new tool to analyze, explain, and forecast the involvement of all organs in the individual patient’s disease development and interpret the ‘cause of death’ more in detail.


Download data is not yet available.


1. Kayser, K., Quantification of virtual slides: Approaches to analysis of content-based image information. J Pathol Inform. 2: p. 2.
2. Kayser, K., Introduction of virtual microscopy in routine surgical pathology--a hypothesis and personal view from Europe. Diagn Pathol. 7: p. 48.
3. Kayser, K., et al., Texture and object related image analysis in microscopic images. Diagnostic Pathology, 2015. 1(14).
4. Kayser, K. and H.J. Gabius, Graph theory and the entropy concept in histochemistry. Theoretical considerations, application in histopathology and the combination with receptor-specific approaches. Prog Histochem Cytochem, 1997. 32(2): p. 1-106.
5. Kayser, K. and H. Hoffgen, Pattern recognition in histopathology by orders of textures. Med Inform (Lond), 1984. 9(1): p. 55-9.
6. Kayser, K., H. Stute, and M. Tacke, Minimum spanning tree, integrated optical density and lymph node metastasis in bronchial carcinoma. Anal Cell Pathol, 1993. 5(4): p. 225-34.
7. Kayser, K., et al., AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis. Folia Histochem Cytobiol, 2009. 47(3): p. 355-61.
8. Kayser, K., et al., Grid computing in image analysis. Diagn Pathol. 6 Suppl 1: p. S12.
9. KAYSER, K.B., Stephan; KAYSER, Gian Digital Image Content and Context Information in Tissue-based Diagnosis. Diagnostic Pathology,. Diagnostic pathology, 2018. 4.
10. Kayser, K. and H.J. Gabius, The application of thermodynamic principles to histochemical and morphometric tissue research: principles and practical outline with focus on the glycosciences. Cell Tissue Res, 1999. 296(3): p. 443-55.
11. Kayser, K., et al., Application of attributed graphs in diagnostic pathology. Anal Quant Cytol Histol, 1996. 18(4): p. 286-92.
12. Kayser, K., et al., Texture- and object-related automated information analysis in histological still images of various organs. Anal Quant Cytol Histol, 2008. 30(6): p. 323-35.
13. Kayser, K., et al., Towards an automated virtual slide screening: theoretical considerations and practical experiences of automated tissue-based virtual diagnosis to be implemented in the Internet. Diagn Pathol, 2006. 1: p. 10.
14. Kayser, K., C. Kremer, and M. Tacke, Integrated optical density and entropiefluss (current of entropy) in bronchial carcinoma. In Vivo, 1993. 7(4): p. 387-91.
15. Alimirzaie, S., M. Bagherzadeh, and M.R. Akbari, Liquid biopsy in breast cancer: A comprehensive review. Clin Genet, 2019.
16. Gale, D., et al., Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA. PLoS One, 2018. 13(3): p. e0194630.
17. Junqueira-Neto, S., et al., Liquid Biopsy beyond Circulating Tumor Cells and Cell-Free DNA. Acta Cytol, 2019: p. 1-10.
18. Neuhaus, J. and B. Yang, Liquid Biopsy Potential Biomarkers in Prostate Cancer. Diagnostics (Basel), 2018. 8(4).
19. Pisapia, P., U. Malapelle, and G. Troncone, Liquid Biopsy and Lung Cancer. Acta Cytol, 2018: p. 1-8.
20. Scarlotta, M., C. Simsek, and A.K. Kim, Liquid Biopsy in Solid Malignancy. Genet Test Mol Biomarkers, 2019.
21. Schmidt, H., et al., The development of a liquid biopsy for head and neck cancers. Oral Oncol, 2016. 61: p. 8-11.
22. Höffe, O., Aristoteles. 3. Auflage. 2006, München: Beck.
23. Kayser, K., et al., To be at the right place at the right time. Diagnostic Pathology 2011. 6.
24. Kayser, K. and G. Stauch, Zeitgedanken und Spiegeldenken. 2000, Baden - Baden: rendevous Verlag.
25. Lorblanchet, M. and M. Bosinski, Höhlenmalerei. Ein Handbuch. 2000, Stuttgart: Thorbecke.
26. Lotze, D., Griechische Geschichte von den Anfängen bis zum Hellenismus 1997, München C. H. Beck.
27. Virchow, R., Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. 1871, Berlin: Teil von der virtuellen biologischen Fachbibliothek.
28. Höpker, W., Obduktionsgut des pathologischen Instituts der Universität Heidelberg, 1841 - 1972. 1976, Heidelberg New York: Springer.
29. Kayser, K., G. Kayser, and K. Metze, The concept of structural entropy in tissue-based diagnosis. Anal Quant Cytol Histol, 2007. 29(5): p. 296-308.
30. Trintscher, K., Biologie und Information - Eine Diskussion über Probleme der biologischen Thermodynamik. 1967, Leipzig: B. G. Teubner Verlagsgesellschaft.
31. Campos, C.D.M., et al., Molecular Profiling of Liquid Biopsy Samples for Precision Medicine. Cancer J, 2018. 24(2): p. 93-103.
32. Hodara, E., et al., Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight, 2019. 4(5).
33. Sato, Y., R. Matoba, and K. Kato, Recent Advances in Liquid Biopsy in Precision Oncology Research. Biol Pharm Bull, 2019. 42(3): p. 337-342.
34. Neumann, M.H.D., et al., ctDNA and CTCs in Liquid Biopsy - Current Status and Where We Need to Progress. Comput Struct Biotechnol J, 2018. 16: p. 190-195.
35. Zeng, C., et al., Towards precision medicine: advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy. Cancer Commun (Lond), 2019. 39(1): p. 12.
36. Zhang, Z., N. Ramnath, and S. Nagrath, Current Status of CTCs as Liquid Biopsy in Lung Cancer and Future Directions. Front Oncol, 2015. 5: p. 209.
37. Zheng, D. and H. Chen, [Advances in Liquid Biopsy and its Clinical Application in the Diagnosis and Treatment of Non-small Cell Lung Cancer]. Zhongguo Fei Ai Za Zhi, 2016. 19(6): p. 394-8.
38. BRUEHL, F.A.C., Hannes Neeff, Justyna Rawluk, Gian Kayser,, State of PD-L1 and PD-1 screening and therapy in NSCLC. Diagnostic Pathology, 2018. 4.
39. The Lancet, O., Liquid cancer biopsy: the future of cancer detection? Lancet Oncol, 2016. 17(2): p. 123.
40. Mathai, R.A., et al., Potential Utility of Liquid Biopsy as a Diagnostic and Prognostic Tool for the Assessment of Solid Tumors: Implications in the Precision Oncology. J Clin Med, 2019. 8(3).
41. Suehara, Y., et al., Liquid biopsy for the identification of intravascular large B-cell lymphoma. Haematologica, 2018. 103(6): p. e241-e244.
42. Rohanizadegan, M. and S. Kulkarni, Transformational role of liquid biopsy in diagnosis and treatment of cancer. Cancer Genet, 2018. 228-229: p. 129-130.
43. Kayser, K., K. Baumgartner, and H.J. Gabius, Cytometry with DAPI-stained tumor imprints. A reliable tool for improved intraoperative analysis of lung neoplasms. Anal Quant Cytol Histol, 1996. 18(2): p. 115-20.
44. Kayser, K., et al., Alteration of the lung parenchyma associated with autoimmune hepatitis. Virchows Arch A Pathol Anat Histopathol, 1991. 419(2): p. 153-7.
45. Kayser, K., et al., Digitized pathology: theory and experiences in automated tissue-based virtual diagnosis. Rom J Morphol Embryol, 2006. 47(1): p. 21-8.
46. Sinowatz, F., et al., Allgemeine und spezielle Pathologie. 2009, Berlin: Veterinärspiegel Verlag.
47. Kayser, K., Logic and diagnosis. Methods Inf Med, 1975. 14(2): p. 76-80.
48. Kayser, K., et al., Application of computer-assisted morphometry to the analysis of prenatal development of human lung. Anat Histol Embryol, 1997. 26(2): p. 135-9.
49. Kayser , K., B. Molnar, and R.S. Weinstein, Virtual Microscopy Fundamentals - Applications - Perspectives of Electronic Tissue - based Diagnosis. 2006, Berlin: VSV Interdisciplinary Medical Publishing.
50. Kayser, K., et al., Theory of sampling and its application in tissue based diagnosis. Diagn Pathol, 2009. 4: p. 6.
51. FU, X.K., Veronica; YAGI, Yukako, Evaluation of an Automated Tissue Sectioning Machine for Digital Pathology. Diagnostic pathology, 2018. 4: p. 267.
52. Kayser, K., Analytical Lung Pathology. 1992, Heidelberg, New York: Springer.
53. Kayser, K., et al., Height and weight in human beings - autopsy report. 1987, Munich: Verlag für angewandte Wissenschaften.
54. Ambrosetti, M.C., et al., Virtual autopsy using multislice computed tomography in forensic medical diagnosis of drowning. Radiol Med, 2013. 118(4): p. 679-87.
55. Andronikou, S., M.L. Kemp, and M. Meiring, Whole-Body MRI Virtual Autopsy Using Diffusion-weighted Imaging With Background Suppression (DWIBS) at 3 T in a Child Succumbing to Chordoma. J Pediatr Hematol Oncol, 2017. 39(2): p. 133-136.
56. Bodmer, A., et al., Virtual autopsy to assess sacral anatomy: Conditions for a minimal invasive approach to the spinal canal through the hiatus sacralis. Surg Neurol Int, 2017. 8: p. 290.
57. Davis, G.J., Virtual autopsy. Forensic Sci Med Pathol, 2013. 9(3): p. 429.
58. Oliva, A., et al., Will virtual autopsy technology replace the role of forensic pathologist in the future? Am J Forensic Med Pathol, 2011. 32(4): p. e17-8.
59. Rutty, G.N. and B. Morgan, Virtual autopsy. Forensic Sci Med Pathol, 2013. 9(3): p. 433-4.
60. Levy, A.D., et al., Virtual autopsy: preliminary experience in high-velocity gunshot wound victims. Radiology, 2006. 240(2): p. 522-8.
61. O'Sullivan, S., et al., Machine learning enhanced virtual autopsy. Autops Case Rep, 2017. 7(4): p. 3-7.
62. Ruder, T.D., P.M. Flach, and M.J. Thali, Virtual autopsy. Forensic Sci Med Pathol, 2013. 9(3): p. 435-6.
63. Thali, M.J., et al., Is 'virtual histology' the next step after the 'virtual autopsy'? Magnetic resonance microscopy in forensic medicine. Magn Reson Imaging, 2004. 22(8): p. 1131-8.
64. Thali, M.J., et al., Charred body: virtual autopsy with multi-slice computed tomography and magnetic resonance imaging. J Forensic Sci, 2002. 47(6): p. 1326-31.
65. Votino, C., et al., Virtual autopsy by computed tomographic angiography of the fetal heart: a feasibility study. Ultrasound Obstet Gynecol, 2012. 39(6): p. 679-84.
66. Wichmann, D., et al., Virtual autopsy as an alternative to traditional medical autopsy in the intensive care unit: a prospective cohort study. Ann Intern Med, 2012. 156(2): p. 123-30.
67. Bolliger, S.A., et al., Postmortem noninvasive virtual autopsy: extrapleural hemorrhage after blunt thoracic trauma. Am J Forensic Med Pathol, 2007. 28(1): p. 44-7.
68. Bolliger, S.A., et al., Virtual autopsy using imaging: bridging radiologic and forensic sciences. A review of the Virtopsy and similar projects. Eur Radiol, 2008. 18(2): p. 273-82.
69. Filograna, L., et al., Computed tomography (CT) virtual autopsy and classical autopsy discrepancies: radiologist's error or a demonstration of post-mortem multi-detector computed tomography (MDCT) limitation? Forensic Sci Int, 2010. 195(1-3): p. e13-7.
70. Kirsch, C.M., Virtual autopsy in the intensive care unit. Ann Intern Med, 2012. 156(11): p. 838-9; author reply 839.
71. Dedouit, F., et al., Virtual autopsy and forensic anthropology of a mummified fetus: a report of one case. J Forensic Sci, 2008. 53(1): p. 208-12.
72. Dedouit, F., et al., Virtual autopsy and forensic identification-practical application: a report of one case. J Forensic Sci, 2007. 52(4): p. 960-4.
73. Franco, A., et al., Feasibility and validation of virtual autopsy for dental identification using the Interpol dental codes. J Forensic Leg Med, 2013. 20(4): p. 248-54.
74. Polacco, M., et al., Virtual autopsy in hanging. Am J Forensic Med Pathol, 2013. 34(2): p. 107-9.
75. Pollanen, M.S. and N. Woodford, Virtual autopsy: time for a clinical trial. Forensic Sci Med Pathol, 2013. 9(3): p. 427-8.
76. Thali, M.J., et al., High-speed documented experimental gunshot to a skull-brain model and radiologic virtual autopsy. Am J Forensic Med Pathol, 2002. 23(3): p. 223-8.
77. Ruegger, C.M., et al., Minimally invasive, imaging guided virtual autopsy compared to conventional autopsy in foetal, newborn and infant cases: study protocol for the paediatric virtual autopsy trial. BMC Pediatr, 2014. 14: p. 15.
78. Thali, M.J., et al., VIRTOPSY - the Swiss virtual autopsy approach. Leg Med (Tokyo), 2007. 9(2): p. 100-4.
79. Ebert, L.C., et al., Computer-assisted virtual autopsy using surgical navigation techniques. AJR Am J Roentgenol, 2015. 204(1): p. W58-62.
80. McKenna, M., Virtues of the virtual autopsy: medical imaging offers new ways to examine the deceased. Sci Am, 2012. 307(5): p. 30, 32.
81. Durham, J.A., et al., Evaluation of a virtual anatomy course for clinical undergraduates. Eur J Dent Educ, 2009. 13(2): p. 100-9.
82. Fang, B., et al., Creation of a Virtual Anatomy System based on Chinese Visible Human data sets. Surg Radiol Anat, 2017. 39(4): p. 441-449.
83. Garg, A., Virtual anatomy: new opportunities for education research. Acad Med, 1998. 73(12): p. 1217-8.
84. Hawk, A., Virtual Anatomy-1900. Mil Med, 2015. 180(11): p. 1199-200.
85. Little, W.B., et al., Computer Assisted Learning: Assessment of the Veterinary Virtual Anatomy Education Software IVALA. Vet Sci, 2018. 5(2).
86. Messier, E., et al., An Interactive 3D Virtual Anatomy Puzzle for Learning and Simulation - Initial Demonstration and Evaluation. Stud Health Technol Inform, 2016. 220: p. 233-40.
87. Trelease, R.B., Toward virtual anatomy: a stereoscopic 3-D interactive multimedia computer program for cranial osteology. Clin Anat, 1996. 9(4): p. 269-72.
88. Doubleday, E.G., V.D. O'Loughlin, and A.F. Doubleday, The virtual anatomy laboratory: usability testing to improve an online learning resource for anatomy education. Anat Sci Educ, 2011. 4(6): p. 318-26.
89. Silverstein, J.C., et al., Multi-parallel open technology to enable collaborative volume visualization: how to create global immersive virtual anatomy classrooms. Stud Health Technol Inform, 2008. 132: p. 463-8.
90. Heng, P.A., et al., Photorealistic virtual anatomy based on Chinese Visible Human data. Clin Anat, 2006. 19(3): p. 232-9.
91. Hoffman, H., et al., A flexible and extensible object-oriented 3D architecture: application in the development of virtual anatomy lessons. Stud Health Technol Inform, 1997. 39: p. 461-6.
92. Seitel, M., et al., RepliExplore: coupling physical and virtual anatomy models. Int J Comput Assist Radiol Surg, 2009. 4(5): p. 417-24.
93. Yang, X.J., et al., Value of 3-dimensional CT virtual anatomy imaging in complex foreign body retrieval from soft tissues. Korean J Radiol, 2013. 14(2): p. 269-77.
94. Kayser, K., et al., Routine DNA cytometry of benign and malignant pleural effusions by means of the remote quantitation server Euroquant: a prospective study. J Clin Pathol, 2000. 53(10): p. 760-4.
95. Kayser, K. and H. Hoeffgen, Pattern recognition in histopathology by orders of textures. Med Inform (Lond), 1984. 9(1): p. 55-9.
96. Gortler, J., et al., Grid technology in tissue-based diagnosis: fundamentals and potential developments. Diagn Pathol, 2006. 1: p. 23.
How to Cite
KAYSER, Klaus; KAYSER, Gian. Virtual Predictive Autopsy: From knowledge and understanding to education, research and communication in digital tissue – based diagnosis.. Diagnostic Pathology, [S.l.], v. 5, n. 1, july 2019. ISSN 2364-4893. Available at: <>. Date accessed: 19 july 2024. doi: