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Abstract 

Background: Entropy belongs to the few basic measurable entities in nature. It measures the 

distance of a closed or open ‘statistical’ system from its present stage to its final stage, and 

analyzes the probability distribution of the included elements, independently from their 

meaning. The development can be predicted by use of an ‘ideal transformation’, i.e. additive 

formula (for example Shannon’s entropy) or by mathematical derivatives such as the more 

generalized q – entropy, for example Tsallis entropy. Herein, the internal structures of the 

system are described which include so – called macro – systems. They are created by individual 

elements or basic micro – systems, and transformed into essentials of tissue – based diagnosis. 

Entropy and neighborhood: The basic entropy approaches consider a spatially force – 

independent system, i.e., the calculation of the elements’ probability distribution does not take 

into account the formation of macro – systems, or the position of the individual elements within 

the system or between individual elements. The receiver of an informative signal cannot 

distinguish whether it has been generated in the center or at the boundary of the system. Only 

the signal’s probability within the information chain and the formation of the chain are 

informative.However, neighborhood plays an important role in development, maturation, 

degradation, and dissolution of biological systems. Most cells are generated by cellular division 

and neighboring cells are more similar in morphology and function than non-neighboring cells. 

This observation also holds true for ‘higher order’ biological systems such as animal colonies, 

forests, or even human societies. Thus, a potentially successful approach of estimating the 

development of a biological system should include neighborhood definitions and considerations. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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Neighborhood conditioned (MST) entropy and entropy flow: Any definition of a neighborhood 

condition is based upon the distances between different elements, called objects. The distances 

can be weighted by additional object features, might be ‘directed’, or might include certain 

‘shadow’ conditions (hidden behind another object). The most frequently used algorithm has 

been introduced by Voronoi in 1902. It can be successfully formulated in graph theory and 

derived approaches. In microscopic morphology, the construction of weighted minimum 

spanning trees (MST) is a convincing approach. Living biological systems are open and not 

closed. They exchange energy, information, and directives for future development with their 

environment. They have to stabilize their own entropy level against that of their environment. 

The mandatory entropy exchange or entropy flow from the individual element into its 

environment or vice versa reflects to the system’s stability and impact on its environment. 

Tissue – based diagnosis and entropy: Tissue – based diagnosis includes all technical procedures 

to ascertain a ‘medical diagnosis’, such as microscopic, electron microscopic investigations, gene 

analysis, proteomics, syntactic structure analysis, liquid biopsies, etc. Herein, the transformation 

and applicability of the entropy approach are described and discussed. 

Keywords: entropy, entropy flow, tissue – based diagnosis, prognosis, morphometry, 

karyometry. 

Introduction 
Our understanding of disease and health has changed during the last decades. Both items are 

understood to belong to the same equilibrium stage of a living system that is regulated by 

internal and external boundary conditions [1-3]. The ‘control of feedback systems’ remains 

effective and provides a structural continuity as long as the boundary limits are not overrun. 

Otherwise it will turn into forward mechanisms and require additional forces to become 

stabilized again [4, 5]. 

Derivatives of this theory are, for example, theories of aging, which explain the increasing 

instability or vulnerability of live with increasing age or theories of maturation and failures at 

developmental stages [6-8].  

In practice, the boundary conditions are measured by clinical investigations. The results are 

classified and transferred into applicable diagnoses, which serve for locally available and 

appropriate treatment [9-12]. The diversity of the patients’ environment is partly 

compensated by globalization or ‘health tourism’ whose entropy analysis might also be a 

useful directive approach [13, 14]. 

Thus, each diagnosis includes a ‘treatment advice’, which is finally digitized (surgery 

<yes<>no>, antibiotics <yes<> no>, etc.), the aim to prolong live and ascertain certain live 

conditions such as analgesia, satisfaction, or live quality [4, 15, 16]. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
https://www.ncbi.nlm.nih.gov/pubmed/?term=entropy
https://www.ncbi.nlm.nih.gov/pubmed/?term=entropy+flow
https://www.ncbi.nlm.nih.gov/pubmed/?term=tissue+%E2%80%93+based+diagnosis
https://www.ncbi.nlm.nih.gov/pubmed/?term=prognosis
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The meaning of a medical diagnosis has changed too in close association with its theoretical 

interpretation. Diagnoses derived from tissue examinations tried to correlate morphological 

characteristics with the outcome and potential useful therapeutic interactions [3, 10, 17].  

They are now a days extended by so-called functional characteristics [3, 4, 17-19]. These 

include macromolecule (protein) expressions and interactions that serve for information 

transfer and release of forces to alter structures at or below the cellular level [3]. Examples 

include predictive diagnoses, individualized (targeted) diagnoses and liquid biopsies. Liquid 

biopsies measure functional characteristics (molecule fractions) of a local disease (solid tumor) 

in the peripheral blood, and not at its spatial origin.  

The investigations to further understand a disease and derive suitable therapeutic actions 

occur in the molecular / genetic ‘world’ and drop out of conventional diagnosis. In addition, 

they promote thoughts that focus on measurement of appropriate characteristics to reliable 

forecast development and impact of therapeutic efforts. The entropy approach seems to fulfill 

all mandatory features of such a successfully assessable tool [3, 4, 15, 18, 20]. 

Herein, we will explain, describe and interpret the potential contribution of the entropy 

approach in tissue – based diagnosis and derived therapy.  

 

Definition of entropy 
One aim of natural sciences is to describe and explain the present stage of an observable system, 

and to forecast its future development. Man has developed several tools that successfully map 

specific system properties in practical transformations. These can be distinguished in 

measurable attributes and algorithms (formulas). For example, useful attributes of a 

thermodynamic system are its pressure, temperature, volume and (free) energy. Any 

appropriate algorithm would try to describe the development of the system, its final stage, and 

to compare the result with our observations [15, 21-25] 

The entropy is such a basic and system specific measure, which is based upon statistics of 

internal characteristics of the system. It can be applied for systems of different physical 

realizations including linguistics, thermodynamics, acoustics, optics, or quantum physics [13, 26-

29].  

Frequent realizations include classic mechanics (ideal gas, reversible and non-reversible 

thermodynamics), computation (numbers, vectors, etc), mathematics (geometry, image 

analysis), sociology (income, age, etc. of defined populations), or biology (self organization of 

macromolecules) [4, 23, 26, 30]. 

In thermodynamics, the entropy S is a state variable and corresponds to the differential of 

transported heat divided by the absolute temperature 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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S = (Q)/T + (Wdiss)/T (1) 

(Q) = additive heat of a closed, isolated system; (Wdiss) = inside the system created heat. 

 

The generalized formula is:    Sq,r = [1- (ipi
q)r]/[r(q-1)] (2) 

 

A closed system is described by: (Q)/T > 0; and increases its entropy until it reaches a final 

stage or the corresponding statistical distribution of its elements [24]. 

An open system can, in addition, import or export entropy through its surface. 

Independently from its nature, any of these systems consists of numerous distinct properties i 

each being measured with a probability pi. Proposing a strong chaos (independent elements) 

the distance from its end stage can be computed to 

S = k*(pi * ln 1/pi)    (3) 

(K = constant, so-called Boltzmann constant), with the condition (pi)=1. 

If the probability pi is only related to the total number N of observable inner (micro) states (for 

example 6 in case of a usual die), then pi = Ni/N holds, and we will obtain the so – called 

Boltzmann – Gibbs distribution of pi. The entropy S is maximum if the pi do not differ, i.e., once 

the system has reached its final stage. 

The entropy concept is based upon ‘inside elements’ that are subject of statistical measures. 

Therefore, it does not make sense to apply the entropy concept to an individual object; such as 

an individual person, animal, organ, vessel, cell, gene, budget, etc. It is a measure of the 

‘behavior of the total system’, or of ‘element agglutinations’ (macro-stages) inside the system 

[13, 15, 18, 20, 23, 31, 32, 33 ]. 

 Examples of applications include procedures to obtain 

• the direction of a process in thermodynamic systems (prognosis, described by the 

direction of a vector); 

• the distance of a system from its final stage (time to death, described by scalar of a 

vector); 

• the amount of energy not available for work during a certain process (impact of 

therapeutic interactions, described by the projection of a vector)  

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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• the disorder of a system (concurrent diseases, described by the number of different 

vectors). 

 

The prerequisite of equation (3) is the assumption that ‘no interacting forces’ between the 

statistical measures exist, which is equal to a ‘strong chaos’, or the so – called Boltzmann – Gibbs 

distribution. In this case the statistical elements occupy no space, and the entropies of different 

systems (including macro-stages) can be simply added as shown in formula (4).  

S (A+B) = Sq(A) + Sq(B) (4) 

In reality, however, the statistical elements frequently occupy a non negligible space, and the 

entropy concept becomes more complicated: In this case we are dealing with the so – called 

‘weak chaos’, or additional existence of locally (spatial) dependent or consistently element 

associated forces. These forces might create internal ‘agglutinations’ which are called macro-

stages [4, 20, 31, 34].  

How to compute the entropy of individual macro-stages, and that of the whole system? 

Obviously, the calculation depends upon the nature of the ‘interaction forces’, or of the ‘weak 

chaos’. Therefore, we have to define certain assumptions. 

The simplest preposition would be an additive weighted factor in formula (3) that assumes an 

equal contribution and nature of the included entropies. It is shown in formula (5) 

S (A+B) = Sq(A) + Sq(B) + (1-q) * Sq(A)*Sq(B). (5) 

The procedure is called (1-q) interaction. The factor q>0 corresponds to a linear distance 

dependence, the occupation space of system elements, or a relaxation (response) time.  

This is an approximation concept and useful, if we do not know the interactions of the inner 

compartments of the systems. We assume that in this case each system is still composed of 

those figures that will result in the ‘theoretical maximum’ of the (macro) system [25]; or that we 

can compute the entropy of our (macro) system in relation to the proposed small deviation q 

(0<q<1).  

Herein, the entropy still remains a measure of the system’s distance from its final stage, and the 

maximum q - entropy still reflects the most probable distribution of inner stages. Tsallis et al. 

demonstrated that the maximum q – entropy describes also the ‘behavior’ of (macro) systems 

accurately. It can easily be calculated for different approaches with the help of Naudts logarithm 

[25, 35].   

Individual event and probability 
In principle, the entropy concept can be applied to a broad variety of systems with “internal 

statistical properties”, i.e., which contain elements that are subject to statistical computations. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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The nature of the ‘statistical elements’ is irrelevant. Therefore, entropy is a suitable entity to 

analyze systems of a broad variety.  

Its advantage is also its disadvantage: it does not make sense to estimate the probability of the 

presence of an individual element, which can only be answered by saying <yes or no>; i.e., it is 

senseless since we do know it already.  

For example, one has just caught a fish or missed it. Nothing is in between. The question ‘Have 

you caught a fish?’ cannot be answered by any entropy concept  

However, it makes sense to forecast man’s future fishing prosperity by probability calculations:  

For example, the fish has a high risk to be caught if it swims close to the fishing rod. Thus, it 

makes sense to associate statistical probabilities and derived terms, such as entropy, to future 

expressions of individual elements (fish) of the system (shoal). Naturally, it reflects to the 

development of the whole system and its potential compartments too.  

If we associate statistical properties with the system’s elements (for example distance of the 

fishes to the fishing rod, food availability, experience of the fisherman, etc.), and if their 

distribution can be estimated, the general concept of entropy can be used to forecasting the 

development of the derived macro-system (number of fishes), and its influence on boundary 

conditions (disappointment of the fisherman and clear out of the fishing rod).  

 

Statistics of basic populations: macro- and micro- stages 
Taking a shoal, a tissue compartment, a forest, or any of so – called macro-systems that are 

composed of numerous individual events, we might detect that their basic elements are 

“aggregated” to individual classes too. This distribution characterizes the distinct macro-stage 

at time of measurement. 

Kolmogorov proposed an axiomatic approach of non-overlapping elementary events ei to 

describe the statistical properties of the macro system as follows:  

Each individual event <ei> is characterized by a number pi within the range 0 < pi < 1 and 

fulfils the condition  {pi} = 1 [17]. The number pi reflects to the probability of ei within the 

macro - system (for example fish within the shoal). Often, the elementary events aggregate to 

similar sub-compartments ci and form a characteristic class (fishes of certain size, age, gender, 

species, etc.).  

The question arises: What are the stages and the most likely distribution of ci?  

Two different methods of measurements do exist, namely a) to undertake multiple serial tests 

with the same sub-compartment, or b) to measure several identical sub-compartments 

contemporarily to answer the mentioned question.  

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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Usually, both strategies will give the same result. For example, we play either with one die 

several times or with multiple dies only once, and assign the number to each observed event (1 

– 6). The probabilities will be the same under ideal conditions. If we play with several (D) dies, 

each die corresponds to a macro-stage. The total number of possible micro-stages results in Nt 

= 6D, and the total number of possible macro-stages 

             𝑴𝒕 = ( 𝟔+𝑫−𝟏
𝟔−𝟏 

) 

 

Each macro - stage W can be calculated according to Boltzmann 

      

 W   


 

Using Sterling’s formula ln(W) = ln(N!) – {Ni*ln(Ni)!}, the expression finally results in 

1/Nt*ln(W) = - {pi*ln(pi)} = S (entropy). 

In tissue – based diagnosis, such calculations can be used to assign glands, vessels, nerves, T-cell 

agglutinations, bacillus colonies, etc. with macro-stages, and the individual cells (goblet, 

endothelial, nerve sheet cells, etc.) with micro–stages [4, 15, 17, 36, 37]. 

  

Entropy and tissue structures 
In due considerations tissue structures correspond to macro-systems: Their entropy as well as 

their contribution to the total (host) system entropy can be measured. Their distances in 

between can also be transformed into a ‘distance entropy system’, which might include macro-

systems (vessels, glands, membranes displaying with / without receptors, etc.) too.  

The condition of the total (host) system to be fulfilled remains (pi) = 1. It can be extended by 

additional conditions of an included macro-system to (pi*ai) = A~. A~ (or N* a~) stand for 

parameters of the macro-system, such as total energy, total of system information, total of die 

or cell numbers, etc. 

As shown by Voß [31, 38] the approach results in a general formula 

S = C* ln W + Ca     (6)  

 C and Ca are constants which depend on the micro- stages (events) of the host system and 

their parameters (aim of measurement). For example in linguistics upon vocals, consonants, 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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length of words, etc. or, in molecular genetics upon the sequence of nuclear acids or in 

pathology, upon the expression of receptors in organ structure and function [1, 20, 60, 68-72]. 

In other words, herein the entropy is a statistical description of a homogeneous macro-stage 

which is built by micro-stages of the host system (epithelial cells of a gland, endothelial cells of 

a vessel, etc.) [4, 15, 17, 36, 37].  

Two principal entropy concept approaches exist to investigate in tissue characteristics: a) 

algorithms to measure its entropy of micro-stages and included macro-stages; b) to include 

‘distance measures’ of micro-stages and macro-stages and create a transformed system where 

the ‘distances’ serve for statistically accessible events [5, 16, 19, 20, 39]. 

An example how to measure the entropy of macro-stages and that of the host system without 

considerations on its structure is shown in <figure 1> [20]: 

Figure 1: The sentence <this is isis> includes four letters (micro-stages) and 3 words (macro-
stages); The four different statistical elements (letters) can create a maximum of 35 different 
macro-stages (words); A total of 256 elements (letters) is needed to realize all 35 macro-stages. 

 

 

* 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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We will reach a different situation, if we take into account distant measures or an included 

structure which is depicted in  <figure 2>, [20]: 

Figure 2: The order of the macro-stages (words) and their neighborhood condition play an 
important role in information and understanding.;The amount of calculated entropies 
corresponds to this observation. 

 

* 

The example demonstrates the influence of ‘neighborhood’ between macro-stages. Assuming 

strong chaos of the system and its macro-stages, the different entropies can be added, for 

example from the left (start of the sentence) to the right (end of the sentence). The ‘distance 

entropy of the statement (this is isis) results to -0.69 in contrast to the question (is this isis?), 

which is equal to zero. 

Additional examples are shown in <figure 3, figure 4, and figure 5>. Herein, tumor cells are 

proposed to be micro-stages that form macro-stages according to the her2neu expressions of 

their neighbors (IHC grading and FISH). The data display with maximum entropy values which 

accurately correspond to the visual score 1, or 2 – 2. 

 

  

Entropy, microstages, macrostages and 

structure
• Consider the sentence: This is Isis.

• Number of microstages: 4 (different letters)

• Number of macrostages:3 (different words)

• Distance between microstages {0,1}

• We get: {t0h0i0s1i0s1i0s0i0s1} or 3 structures.

• Shannon’s entropy of (This is Isis)
Structure 1: 1.38 structure 2: 0.69 structure 3: 1.38

• Entropy difference between structures:
Structure 1: -0.69  -> structure 2: +0.69 ->  structure 3

• Entropy difference of (Is this Isis?)
Structure 1: 0.69   -> structure 2:   0         ->  structure 3.

• Total entropy of macrostructures:
– Shannon’s S = 3.45;     and:       Sm = {pk* ln(pk)} = 0.22

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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Figure 3: Application of the entropy concept in targeted therapy;  
Example of IHC and FISH her2_neu investigation in invasive breast carcinoma (visual score = 2);  
Right side: IHC expression scores (0 – 3) correspond to four macro-stages with N = 16 micro–
stages (1 – 4) connecting membranes that express IHC stain intensity scores (0-3) 
Left side: (FISH signal scores (0 -  3) correspond to four macro–stages with N = 16 micro–stages 
(1 – 4) neighboring cells that express 0 – 3 FISH signals / cell. 

 

* 

  

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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The obtained results of the entropy calculation are depicted in < figure 4> and <figure 5>. 
 
Figure 4: Measures derived from the entropy concept based upon proposed macro-stages 
(neighboring cells with scored IHC membrane intensity as shown in <figure 3>. 

 
* 
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Figure 5: Measures derived from the entropy concept based upon proposed FISH macro-stages 
(neighboring cells with scored FISH signals as shown in <figure 3>. 

 

* 

The exemplarily performed calculations use a specific neighborhood condition which includes 

Voronoi’s condition, Dirichlet’s tessellation, and weighted IHC edges (<figure 3, figure 4>), or 

weighted vertices (<figure 3, figure 5>). The computation results in digital data that might serve 

for automated scores and detailed insight in tumor cell signaling. They can be extended in 

entropy flow calculation.  

 

Structural (MST) entropy and entropy flow 
Considerations on neighborhood play an important role in natural sciences [32, 33, 40-43]. A 

strong association of similar events, objects, and structures is frequently noticed, and can be 

assumed to be a general law in nature. It also reflects to information or signal exchange and 

understanding: the closer elements or events are located the more frequent, easier and 

accurate are their information exchange and derived actions.  

In biology, neighborhood is a prerequisite to create structures, and, vice versa, neighborhood 

considerations might detect structures. 

Voronoi’s neighborhood condition and its derivative, Dirichlet’s tessellation are the most 

frequently applied techniques in two dimensional spaces [18, 19, 31, 36, 38, 44]. They can be 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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extended by O’Callaghan’s condition which takes into account lower and upper distances 

between proposed neighbors [42, 45]. This approach can simulate tissue spaces of different 

nature such as air spaces, collagen, vessels, etc. An example is depicted in <figure 6>.  

Figure 6: Example of entropy calculations based upon Voronoi’s neighborhood condition and 
O’Callaghan’s limitation; The construction of the minimum spanning tree (MST) entropy in 
combination with two node scalars (size, staining intensity, DAB, CEA) is shown [19, 20, 46]; The 
calculated clusters (sub – structures) are marked in ‘blue’ (lower left image). 

 

* 

The basic formula of this approach can be written:  

E(MST) = 1/N * [p*(mst)* ln[p*(mst)]    (7) 

E(MST) = structural entropy, N = number of elements, p(mst) = SVik * SEij 

SVik = set of parameters associated with the individual neighbouring vertices i, k, i.e. 

SVik = [(N-1) * (vi – vk) /  ((vi – vk)]*2   

SEij = [(N-1) * (eij) /  ((eij)]*2   

(vi - vk),  (eij) = distance of weights between nearest vertices vi, vj, or connecting edges eij. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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The analysis of internal entropy neighborhood details can be expanded to calculate the entropy 

differences between substructures. Knowing the surface of the substructures, their entropy 

differences and distances to their neighboring structures we can easily compute the entropy 

flows which are H = W / S * t. (H = entropy flow, W = entropy difference, S = surface 

compartment of the substructure in relation its neighbor, t = normalized time period (1).  

 

Onsager’s theory predicts that the entropy flow tries to reach a minimum, which can be 

formulated as follows: 

dH/(S*t) = [{(Q/T) + (Wdiss)/T}sys – {(Q/T) + (Wdiss)/T}env]/[S*t] -> minimum; (8) 

 

The entropy flow can also be calculated for circumscribed tissue compartments such as solid 

tumors, lymph nodes, etc. [17, 33, 36, 43, 47]. Kayser et al. reported a close correlation of the 

entropy flow to the survival of patients with surgically treated lung carcinomas and intra-

pulmonary metastases [48-51] 

Fine needle aspirations or cytology specimens might be evaluated in a similar manner. An 

example is shown in <figure 7 and figure 8>. Cellular clusters are separated from the 

environment by layers of pixels that contain different gray values. The density and width of the 

boundary shells are statistical elements and thus subject for entropy considerations. Such an 

approach might be an appropriate method to estimate the glare effect or artifacts [52-54]. 
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Figure 7: Fine needle aspiration of a circumscribed parotid gland lesion; Giemsa, x 10. 

 

* 

Figure 8: Computation of the entropy based upon cell size and neighborhood. Intensity of the 
gray color indicates the amount of entropy, graphs (in blue) connected aggregates, circles 
(ellipsoids) calculated entropy flow clusters. Original smear is shown in <figure 7>. 

 
* 
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The entropy concept and image primitives 
Pathologists are used to evaluate and diagnose microscopic images. They utilize their knowledge 

of disease and anatomy and incorporate their experience. They have been trained to recognize 

certain tissue compartments such as cell types, glands, nerves, vessels, etc.  

In other word, the tools to state of a microscopic diagnosis are a ‘product’ of image content 

information (ICI) and external (pathologist’s) knowledge (PK). Image content information is the 

information of an image that can be ‘extracted’ without any external knowledge, i.e., to segment 

and identify objects without any interpretation what the extracted image objects correspond to 

[3, 17, 19, 47]. The external information corresponds to the knowledge of the pathologist. 

Therefore, the specificity and sensitivity of a pathologist’s diagnostic performance is the product 

of ICI x PK, and the corresponding entropies can be computed  

S(D) = S(ICI) x S(PK)   (9). 

 

 

How to quantify S(ICI)?  

Our considerations on macro-stages and micro-stages might serve to develop appropriate tools. 

The simplest micro-stages can be defined and classified by gray values of an individual pixel and 

the simplest macro-stages by one or two dimensional pixel configurations, such as closed and 

open lines, crosses, or planes such as filled circles, triangles, squares, etc. Such a procedure 

permits image entropy calculations that are completely independent form any external 

knowledge [3, 17, 19, 47]. Thus, such an algorithm might analyze and evaluate microscopic 

images as well as images of forests, cities, wild life or natural disasters. 

The entropy approach that addresses the analysis of external knowledge might follow a similar 

procedure. All known different diagnoses (or distinct expertise events) might be transformed in 

micro-stages, and the derived actions in macro-stages. The automated entropy calculations will 

result in estimations how ‘severe’ the diagnosed disease and ‘how potentially successful’ the 

derived actions are. For example, approximately, 860 different pulmonary diseases exist, which 

induce approximately 20 different interactions [55]. Taking 5 different micro-stages only we will 

obtain a maximum of 3125 different constellations, and 126 macro-stages. In other word, five 

image primitives are already sufficient to describe 3125 different diagnoses and 126 derived 

therapeutic actions, as exemplarily demonstrated in <Figure 1>. Obviously, we have to define 

additional micro-stages if we want to include more than 126 actions.  

Each pixel gray value might serve for an image primitive, or a predefined width of gray values (1 

< gi< 10, < 20, < 30, < 40,…). Consecutively, the entropy approach might be applied to each set 
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of primitives within a gray value range. The next logical step would include the entropy 

differences between the different sets and the derived entropy flow [56].  

Such an entropy approach simulates the thermodynamic forces at ‘boundaries’ if we assume 

that strong forces would induce intensive stains (high gray values). This approach permits insight 

into the thermodynamics of events which cannot or only crudely be repeated. An example is 

depicted in <figure 9>.  

Figure 9: Computed ‘entropy flow’ in a chicken kidney embryo based upon IHC staining 

intensities of maturating ducts; (x – axis: gray value (stain intensity); y-axis: calculated entropy 

difference; color intensity: absolute individual entropy value. The Voronoi cells represent the 

‘range’ of entropy levels. 

 

 

* 

 

Conclusions 
The entropy concept is based upon fundamental characteristics of nature, and therefore unique. 

It is a tool to analyze statistical events within a broad spectrum of applicable systems and might 

serve for successful transformation of these events into a principal statistical model. The analysis 

permits measure and forecast of the system’s present stage and its future development.  

Applications in tissue – based diagnoses include measures of structures and derived functions 

within circumscribed tissue lesions, for example tumor cell heterogeneity and its impact on 

prognosis [3, 17, 56]. Proposed therapeutic actions might be associated as well. It can also be 
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extended to estimate thermodynamic stages within a cellular microenvironment without 

repetitive investigations.  

The entropy concept is of solely statistical nature and not applicable for individual events. Its 

correct application opens new doors in medical and tissue – based diagnosis. Being a solely 

system dependent procedure, it can be embedded in appropriate feedback mechanisms and 

permit fully automated diagnosis and therapy associated algorithms in the near future. 
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