State of PD-L1 and PD-1 screening and therapy in NSCLC

  • Frido Bruehl Institute of Pathology, Technical University Munich, Munich, Germany
  • Agnes Csanadi
  • Hannes Neeff
  • Justyna Rawluk
  • Gian Kayser, MD Institute of Surgical Pathology, Department of Pathology, University Medical Center Freiburg, Freiburg

Abstract

Lung cancer is still the leading cause of death among all malignancies worldwide. The development of targeted therapies against driver mutations such as EGFR, ALK1, ROS1 and BRAF have led to a significant improvement in patient progression free survival and to a benefit in quality of life of patients suffering from advanced and metastasized non-small cell lung cancer. But since these genetic aberrations are found only in a small subset of lung cancer more globally directed therapeutic approaches are needed to address the therapeutic dilemma of this highly diverse disease. For a long time, it is known that lung cancer is a so called immunogenic disease, i. e. it often evokes a host immune response. Likewise, lung cancers are also developing mechanisms to escape these anti-cancerous immune reactions. One immunogenic axis is that of PD1 and PD-L1. In investigation of this activation-deactivation chain involving lymphocytes, tumor cells but also stromal fibroblasts and macrophages new humanized antibodies have been developed and approved for the treatment of non-small cell lung cancer (NSCLC). Clinical trials have shown effectiveness of these agents, but a valid and reproducible predictive marker has not been found so far. Here we review the current literature on the PD1/PD-L1 axis in NSCLC, its biological function on histological subtype. Together with meta-analytic data performed for this review and results from our own investigations we also give a comprehensive outlook on future developments considering predictive testing and therapeutic options.

Downloads

Download data is not yet available.

References

References
1. Coley WB. The Treatment of Malignat Tumors By Repeated Inoculations of Erysipelas: With A Report of Ten Original Cases. The American Journal of the Medical Sciences. 1893;105:487–510.
2. Ehrlich P. Ueber den jetzigen stand der karzinomforschung 1908.
3. van der Bruggen P, Traversari C, Chomez P, Lurquin C, Plaen E de, van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science (New York, N.Y.). 1991;254:1643–7.
4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. doi:10.1016/j.cell.2011.02.013.
5. Leach DR, Krummel MF, Allison JP. Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science. 1996;271:1734. doi:10.1126/science.271.5256.1734.
6. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. The EMBO journal. 1992;11:3887.
7. Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ, Sharpe AH. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. European journal of immunology. 2003;33:2706–16. doi:10.1002/eji.200324228.
8. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubat T, Yagita H, Honjo T. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. International Immunology. 1996;8:765–72. doi:10.1093/intimm/8.5.765.
9. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proceedings of the National Academy of Sciences. 2001;98:13866–71. doi:10.1073/pnas.231486598.
10. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 Receptors Inhibit T-Cell Activation by Distinct Mechanisms. Molecular and Cellular Biology. 2005;25:9543–53. doi:10.1128/mcb.25.21.9543-9553.2005.
11. Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS letters. 2004;574:37–41. doi:10.1016/j.febslet.2004.07.083.
12. Vibhakar R, Juan G, Traganos F, Darzynkiewicz Z, Finger LR. Activation-Induced Expression of Human Programmed Death-1 Gene in T-Lymphocytes. Experimental Cell Research. 1997;232:25–8. doi:10.1006/excr.1997.3493.
13. Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B, et al. Structure of the Complex of Human Programmed Death 1, PD-1, and Its Ligand PD-L1. Structure. 2015;23:2341–8. doi:10.1016/j.str.2015.09.010.
14. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annual review of immunology. 2008;26:677–704. doi:10.1146/annurev.immunol.26.021607.090331.
15. Guleria I, Khosroshahi A, Ansari MJ, Habicht A, Azuma M, Yagita H, et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. The Journal of experimental medicine. 2005;202:231–7. doi:10.1084/jem.20050019.
16. Blank C, Brown I, Marks R, Nishimura H, Honjo T, Gajewski TF. Absence of Programmed Death Receptor 1 Alters Thymic Development and Enhances Generation of CD4/CD8 Double-Negative TCR-Transgenic T Cells. The Journal of Immunology. 2003;171:4574–81. doi:10.4049/jimmunol.171.9.4574.
17. Morita M, Fujino M, Jiang G, Kitazawa Y, Xie L, Azuma M, et al. PD-1/B7-H1 Interaction Contribute to the Spontaneous Acceptance of Mouse Liver Allograft. American Journal of Transplantation. 2010;10:40–6. doi:10.1111/j.1600-6143.2009.02859.x.
18. Ansari MJI, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, et al. The Programmed Death-1 (PD-1) Pathway Regulates Autoimmune Diabetes in Nonobese Diabetic (NOD) Mice. The Journal of Experimental Medicine. 2003;198:63–9. doi:10.1084/jem.20022125.
19. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science (New York, N.Y.). 2001;291:319–22.
20. Das S, Suarez G, Beswick EJ, Sierra JC, Graham DY, Reyes VE. Expression of B7-H1 on Gastric Epithelial Cells: Its Potential Role in Regulating T Cells during Helicobacter pylori Infection. The Journal of Immunology. 2006;176:3000–9. doi:10.4049/jimmunol.176.5.3000.
21. Yao S, Wang S, Zhu Y, Luo L, Zhu G, Flies S, et al. PD-1 on dendritic cells impedes innate immunity against bacterial infection. Blood. 2009;113:5811–8. doi:10.1182/blood-2009-02-203141.
22. Iwai Y, Terawaki S, Ikegawa M, Okazaki T, Honjo T. PD-1 inhibits antiviral immunity at the effector phase in the liver. The Journal of experimental medicine. 2003;198:39–50. doi:10.1084/jem.20022235.
23. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682–7. doi:10.1038/nature04444.
24. Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nature medicine. 2006;12:1198–202. doi:10.1038/nm1482.
25. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–9. doi:10.1038/70932.
26. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature medicine. 2002;8:793–800. doi:10.1038/nm730.
27. Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M, et al. Programmed death ligand-1 expression in non-small cell lung cancer. Laboratory investigation; a journal of technical methods and pathology. 2014;94:107–16. doi:10.1038/labinvest.2013.130.
28. Gong A-Y, Zhou R, Hu G, Li X, Splinter PL, O'Hara SP, et al. MicroRNA-513 Regulates B7-H1 Translation and Is Involved in IFN-γ-Induced B7-H1 Expression in Cholangiocytes. The Journal of Immunology. 2009;182:1325–33. doi:10.4049/jimmunol.182.3.1325.
29. Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M. B7-H1 Expression on Non-Small Cell Lung Cancer Cells and Its Relationship with Tumor-Infiltrating Lymphocytes and Their PD-1 Expression. Clinical Cancer Research. 2004;10:5094–100. doi:10.1158/1078-0432.ccr-04-0428.
30. Schmidt LH, Kummel A, Gorlich D, Mohr M, Brockling S, Mikesch JH, et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS One. 2015;10:e0136023. doi:10.1371/journal.pone.0136023.
31. D'Incecco A, Andreozzi M, Ludovini V, Rossi E, Capodanno A, Landi L, et al. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. British journal of cancer 2014. doi:10.1038/bjc.2014.555.
32. Mu CY, Huang JA, Chen Y, Chen C, Zhang XG. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Medical oncology. 2011;28:682–8. doi:10.1007/s12032-010-9515-2.
33. Barlesi F, Park K, Ciardiello F, Pawel J von, Gadgeel S, Hida T, et al. Primary analysis from OAK, a randomized phase III study comparing atezolizumab with docetaxel in 2L/3L NSCLC. Annals of Oncology 2016. doi:10.1093/annonc/mdw435.43.
34. Gettinger S, Rizvi NA, Chow LQ, Borghaei H, Brahmer J, Ready N, et al. Nivolumab Monotherapy for First-Line Treatment of Advanced Non-Small-Cell Lung Cancer. J Clin Oncol. 2016;34:2980–7. doi:10.1200/JCO.2016.66.9929.
35. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med 2016. doi:10.1056/NEJMoa1606774.
36. Chen Y-y, Wang L-b, Zhu H-l, Li X-y, Zhu Y-p, Yin Y-l, et al. Relationship Between Programmed Death-ligand 1 and Clinicopathological Characteristics in Non-small Cell Lung Cancer Patients. Chinese Medical Sciences Journal. 2013;28:147–51. doi:10.1016/s1001-9294(13)60040-1.
37. Yang CY, Lin MW, Chang YL, Wu CT, Yang PC. Programmed cell death-ligand 1 expression in surgically resected stage I pulmonary adenocarcinoma and its correlation with driver mutations and clinical outcomes. European journal of cancer 2014. doi:10.1016/j.ejca.2014.01.018.
38. Boland JM, Kwon ED, Harrington SM, Wampfler JA, Tang H, Yang P, Aubry MC. Tumor B7-H1 and B7-H3 expression in squamous cell carcinoma of the lung. Clinical lung cancer. 2013;14:157–63. doi:10.1016/j.cllc.2012.05.006.
39. Zhang Y, Wang L, Li Y, Pan Y, Wang R, Hu H, et al. Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Onco Targets Ther. 2014;7:567–73. doi:10.2147/OTT.S59959.
40. Kim M-Y, Koh J, Kim S, Go H, Jeon YK, Chung DH. Clinicopathological analysis of PD-L1 and PD-L2 expression in pulmonary squamous cell carcinoma: Comparison with tumor-infiltrating T cells and the status of oncogenic drivers. Lung Cancer. 2015;88:24–33. doi:10.1016/j.lungcan.2015.01.016.
41. Cooper WA, Tran T, Vilain RE, Madore J, Selinger CI, Kohonen-Corish M, et al. PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer. 2015;89:181–8. doi:10.1016/j.lungcan.2015.05.007.
42. Ameratunga M, Asadi K, Lin X, Walkiewicz M, Murone C, Knight S, et al. PD-L1 and Tumor Infiltrating Lymphocytes as Prognostic Markers in Resected NSCLC. PLoS One. 2016;11:e0153954. doi:10.1371/journal.pone.0153954.
43. Wang A, Wang HY, Liu Y, Zhao MC, Zhang HJ, Lu ZY, et al. The prognostic value of PD-L1 expression for non-small cell lung cancer patients: a meta-analysis. Eur J Surg Oncol. 2015;41:450–6. doi:10.1016/j.ejso.2015.01.020.
44. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348:124–8.
45. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N Engl J Med. 2017;376:2415–26. doi:10.1056/NEJMoa1613493.
46. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7. doi:10.1038/nature14011.
47. Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T, et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2014;25:1935–40. doi:10.1093/annonc/mdu242.
48. Sun Z, Aubry MC, Deschamps C, Marks RS, Okuno SH, Williams BA, et al. Histologic grade is an independent prognostic factor for survival in non-small cell lung cancer: an analysis of 5018 hospital- and 712 population-based cases. The Journal of thoracic and cardiovascular surgery. 2006;131:1014–20. doi:10.1016/j.jtcvs.2005.12.057.
49. Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proceedings of the National Academy of Sciences. 2008;105:20852–7. doi:10.1073/pnas.0810958105.
50. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. The New England journal of medicine 2015. doi:10.1056/NEJMoa1507643.
51. Xu C, Fillmore CM, Koyama S, Wu H, Zhao Y, Chen Z, et al. Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer cell. 2014;25:590–604. doi:10.1016/j.ccr.2014.03.033.
52. Chen Y-b, Mu C-Y, Huang J-A. Clinical significance of programmed death-1 ligand-1 expression in patients with non-small cell lung cancer: a 5-year-follow-up study. Tumori. 2012;98:751–5. doi:10.1700/1217.13499.
53. Pan Z-K, Ye F, Wu X, An H-X, Wu J-X. Clinicopathological and prognostic significance of programmed cell death ligand1 (PD-L1) expression in patients with non-small cell lung cancer: a meta-analysis. J Thorac Dis. 2015;7:462–70. doi:10.3978/j.issn.2072-1439.2015.02.13.
54. Socinski M, Creelan B, Horn L, Reck M, Paz-Ares L, Steins M, et al. NSCLC, metastaticCheckMate 026: A phase 3 trial of nivolumab vs investigator's choice (IC) of platinum-based doublet chemotherapy (PT-DC) as first-line therapy for stage iv/recurrent programmed death ligand 1 (PD-L1)−positive NSCLC. Annals of Oncology. 2016;27:LBA7_PR-LBA7_PR. doi:10.1093/annonc/mdw435.39.
55. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. The New England journal of medicine. 2015;372:2018–28. doi:10.1056/NEJMoa1501824.
56. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. The Lancet. 2016;387:1837–46. doi:10.1016/S0140-6736(16)00587-0.
57. Reck M, Socinski MA, Cappuzzo F, Orlandi F, Stroyakovskii D, Nogami N, et al. LBA1_PRPrimary PFS and safety analyses of a randomized phase III study of carboplatin + paclitaxel +/− bevacizumab, with or without atezolizumab in 1L non-squamous metastatic nsclc (IMPOWER150). Annals of Oncology. 2017;28:mdx760.002-mdx760.002. doi:10.1093/annonc/mdx760.002.
58. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N Engl J Med. 2017;377:1919–29. doi:10.1056/NEJMoa1709937.
59. Fujimoto D, Uehara K, Sato Y, Sakanoue I, Ito M, Teraoka S, et al. Alteration of PD-L1 expression and its prognostic impact after concurrent chemoradiation therapy in non-small cell lung cancer patients. Sci Rep. 2017;7:11373. doi:10.1038/s41598-017-11949-9.
60. Antonia SJ, Brahmer, JR, Khleif S, Balmanoukian AS, Ou SIH, Gutierrez M, et al. Phase 1/2 study of the safety and clinical activity of durvalumab in patients with non-small cell lung cancer (NSCLC). Annals of Oncology. 2016;27:1216PD.
61. Butte MJ, Keir ME, Phamduy TB, Freeman GJ, Sharpe AH. PD-L1 interacts specifically with B7-1 to inhibit T cell proliferation. Immunity. 2007;27:111–22. doi:10.1016/j.immuni.2007.05.016.
62. Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Annals of Oncology. 2015;26:2375–91. doi:10.1093/annonc/mdv383.
63. Champiat S, Dercle L, Ammari S, Massard C, Hollebecque A, Postel-Vinay S, et al. Hyperprogressive disease (HPD) is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 2016. doi:10.1158/1078-0432.CCR-16-1741.
64. Chiou VL, Burotto M. Pseudoprogression and Immune-Related Response in Solid Tumors. JCO. 2015;33:3541–3. doi:10.1200/JCO.2015.61.6870.
65. Hickmott L, La Peña H de, Turner H, Ahmed F, Protheroe A, Grossman A, Gupta A. Anti-PD-L1 atezolizumab-Induced Autoimmune Diabetes: a Case Report and Review of the Literature. Targeted oncology. 2017;12:235–41.
66. Jørgensen JT. Companion diagnostic assays for PD-1/PD-L1 checkpoint inhibitors in NSCLC. Expert Review of Molecular Diagnostics. 2016;16:131–3. doi:10.1586/14737159.2016.1117389.
67. Bernstein HJ. Recent changes to RasMol, recombining the variants. Trends Biochem Sci. 2000;25:453–5.
Published
2018-04-11
How to Cite
BRUEHL, Frido et al. State of PD-L1 and PD-1 screening and therapy in NSCLC. Diagnostic Pathology, [S.l.], v. 4, n. 1, apr. 2018. ISSN 2364-4893. Available at: <https://www.diagnosticpathology.eu/content/index.php/dpath/article/view/262>. Date accessed: 19 apr. 2024. doi: https://doi.org/10.17629/www.diagnosticpathology.eu-2018-4:262.
Section
Review Articles

Most read articles by the same author(s)